1 The Rise of Stromgren Spheres

1a) Defining Nion (Nrec) as the total number of photoionizations (recombinations) per second that
occur in the surrounding gas, we have the expression

dNtot

dt = Nion _Nrec (1)

As in the standard Stromgren argument, we say that all ionizing photons emitted by the star are
absorbed in the surrounding medium, thus Nj, is simply the number of ionizing photons emitted
per second, denoted by @
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Since we assume that all photons come out at a single frequency vy, we simply have
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The number of total radiative recombinations per second is

Nyec = nenpapV (4)

where n., n, are the electron and proton number densities, V is the volume, and we will use the ap
recombination coefficient (i.e., we will assume all ionizing photons are trapped in the HII region).
Finally, the total number of atoms in the HII region is Niot = nV. Assuming the HII region is
essentially totally ionized, n, = n. = n, where the total number density n is assumed to be constant
with radius. Then equation 1 can be written
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We see the characteristic scales are the recombination time t;oc = (naB)_1 and the Stromgren
volume, Vi = 47 R2/3 = Q/n*ap, where the stromgren radius is
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So a nice way to write the differential equation is
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The solution is

n(V/Vy = 1) = ~t/trec + C (9)
The integration constant C' = 0 since the volume is zero at t = 0, so
V(t) = Va1 - et (10)
or in terms of the radius
R(t) = Ry(1 — e~ t/trec)1/3 (11)



We see that as ¢ — oo, the radius of the HII region goes to Ry, as expected. The timescale for the
HII region to grow is given by the recombination timescale t,ec.

1b) At a temperature 7' = 10* K, the recombination coefficient is ap ~ 2 x 107!3. So plugging in
numbers we find
tree = (nag) ™' & 1.6 x 10° years (12)

This is comparable to the lifetime of an O-star, so the HII region will just about grow to its stromgren
radius when the star is about to die.

1c) We can find the velocity of the edge of the HII region by differentiating our solution

dR(t) R, e t/tea .
t)=——"t=—" 1— e t/tree)=2/3 13
ot = G = I - (13)
We could have guessed that characteristic velocity of the HII region expansion is

Vs ~ Ry [tree ~ 107 cm 571 (14)
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This is about an order of magnitude greater than the sound speed ¢ ~ (kKT'/m,)*/? ~ 10% cm s™1.
Thus the HII region expansion is initially supersonic and we can neglect hydrodynamical effects.

1d) To determine the ionization state at a radius r, we apply the equation that expresses photoion-
ization equilibrium

47r/ JV(T)O’(I/)W/H] = N Npap (15)
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which states that the local photoionization rate equals the radiative recombination rate. Here o(v)
is the bound-free cross-section for hydrogen, and J,(r) the monochromatic mean intensity of the
radiation field at radius r. Assuming the radiation source is an isotropically emitting point source
of intensity I,, and radius R,, and there is negligible attenuation above it (which should be OK at
very small radii) we can use the standard result

I, R?
472

The monochromatic flux at the surface of a lamber radiator is F,, = wI, and so the monochromatic
luminosity is

L, = 47 R?F, = 47*R?I, (17)
So we can write the monochromatic mean intensity as
L,

Jp=—— 18

167272 (18)

(Note that the original problem set neglected a factor of 47). Using this value, the photoionization
equilibrium equation becomes
Qoo
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where 09 = o(1g). Defining the ionized fraction xpr = ngrr/n, we have for pure hydrogen, n, =
ny, = xynn and ngp = (1 — zyn)n and so
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HI = nenpaB (19)

(1 — SUHH) = 77,21'%{110[3 (20)

Dividing both sides by n?ap, we can write this in dimensionless form
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Where the dimensionless quantity €2 is apparently the useful measure for how strong the ionization
is. We can now solve the quadratic equation for xyr

i = =0 + VQ2 + 20 (22)

and hence
xHI:1—$H1121+Q—\/Q2+QQ (23)

We should check our limits. For a very weak source (L — 0 at fixed r), we have Q@ — 0 and find no
ionization zg = 0, as expected. For a very strong source (L — oo at fixed r), we have Q — oo,
and we need to take a little more care in taking the limit. We use a Taylor expansion in the small
quantity 2/€:

ran = —Q4+ QA +2/0O)Y2x -0+ Q1 +1/Q+..)~1 (24)

As expected, the medium is totally ionized.

1e) To find the small r behavior, we note that this is the limit 2 — oo, so we use an Taylor expansion
similar to the above, but keep another term

r =1+Q-0Q01 42/ ~1+Q-Q1+1/Q—1/40% + ..) (25)
Thus to lowest order in 1/ we find
oL (26)
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2 Flipping Spins at the Epoch of Reionization
Define the excitation energy for the 21 cm line to be T, = hvg/k = 0.068 K, where vg = (¢/21 cm).
We are always in the Rayleigh-Jeans limit since T' > T} so the observed specific intensity is

2

21/fs
Iu,obs = chTbv (27)

where Ty, is the brightness temperature, which may or may not be related to the kinetic temperature
of the observed gas, Tk . Lastly, the spin temperature Ty is defined as

M _ I =T Te _ g3=T/T. (28)
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a) Consider a CMB beam with specific intensity B, (T,,vss) = Ip passing through a neutral
hydrogen cloud of optical depth 7. The radiative transfer equation tells us that

oI,
or

=-I,+5,. (29)

If S, is constant in space, we can let x = I, — S, and the solution to the above equation is

T = xpe . (30)
Substituting back in for z, we find that the observed specific intensity for the CMB beam is:
Iobs = By (T, vs)e™ " + S, (ves) (1 —e™ 7). (31)

Now, we must calculate the source function of the 21 cm line, S, = j,/a,. In terms of the
Einstein coefficients, the extinction coefficient corrected for stimulated emission is
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Now use the Einstein relation B1g/Bg1 = go/¢1 and substitute in for nj /ng:

hl/fs
« =
v 4

6 )noBor (1—e"T/T) . (33)
Now use another Einstein relation A;g = (2hvg /c?)Big = (2hvg /3¢%) Box,

3¢ ~T,/T.
Q, = mgb(l/fs)noAlo (1 —e T/ S) . (34)
Lastly, we can Taylor expand the exponential since T > T} to obtain the extinction coefficient
for the 21 cm line:

362 T*
o, = 871'72 (l/fs)n()Alo <T) . (35)
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We can also express the emission coefficient in terms of the Einstein coefficients:
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Now we can compute the source function by dividing the emission and extinction coefficients:

2hu§’s Eg _ 2h1/1§’s gefT*/Ts

S, = = 37
3c? no T, 2 T, (37)
In the limit of T > T, we obtain the final result for the source function
21/2S
S, = czf ET,. (38)
Now return to equation 31 and plug in for the source function:
-7 2Vf2s —T
I, obs = By (Ty, vis)e™ ™ + CTkTS(l —e 7). (39)
Plugging in for I, obs, we find the brightness temperature to be:
Ty=Tye "+Ts(1—e"). (40)
Relative to the CMB background temperature, we have 073 = 13 — T, or
0T, = (T, T,)(1— e 7)), (41)




b) In statistical equilibrium, the balance of Einstein coefficients is

n1 (Ao + BioJ + Cio) = no(BorJ + Cor), (42)
or
E o BOlj+ 001
ng  Aio+ BioJ + Cio’

Use the following three Einstein relations:

(43)

Bo1 = 3Bio,
AlO = 2h1/f35310/62,
Co1 = 301067T*/TK.

Also, the local mean intensity field J is defined such that
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J==BkT,. (44)
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Using the above 4 relations, we can express equation 43 in terms of Cig and Ajg. Defining
z. = C10T%/A10T,, we obtain the desired result:
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From inspection of the above equation we see that | Ts = Tk when z,. > 1

and ’TS =T, when z. < 1 ‘ When z. > 1, collisional de-excitation is dominant so the gas

collisions are setting the spin-flip level populations and the spin temperature will approach the
gas temperature. In the opposite limit, the level populations are being set by the radiative
transitions caused by the CMB so the spin temperature approaches T’, in this limit.

c¢) We want to find the critical density such that z. = 1. For collisional de-excitation by neutral
hydrogen collisions, the rate is roughly given by
Cl() >~ O10NHVH. (46)

We will assume the cross section is just the geometric cross section, 019 = ma, where ag is the
Bohr radius. Assume a characteristic velocity of order

vy kk (47)
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Plugging in we find the critical density to be:

AlOT'y mg
= Ly 48
e = T2\ BTk (48)

In class we estimated the spontaneous emission coefficient for hyperfine splitting to be Ay ~
6x10~° s~!. Using Tx = 100 K and T, = 2.7 K, the critical density is roughly’ nge~3x1072 cm™3 ‘
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The rate at which Ly« photons drive transitions from the excited to the ground hyperfine level
is given by Pjg. By LTE arguments (similar to the derivation for the relation between Cjo and
Co1 from class), we have

Py = 3P10€_T*/TK. (49)
Statistical equilibrium now including transitions due to Ly« photons is given by

n1(A1o + BioJ + Cio + Pio) = no(Bo1J + Co1 + Po1)- (50)

Analogous to part b), we can use the Einstein relations and the relation for .J to express the
above equation only in terms of Ajg, C1g, and Pyg. The relation we obtain is

T+ T (we + w0)

T = 51
s e (51
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From part a), the observed fluctuation in the brightness temperature is given by equation
40. Absorption occurs when 07, < 0 and emission occurs when 67, > 0. From inspection of
equation 40, the sign of §7; depends on the quantity 75 — T, so we must determine the sign
of this quantity as a function of redshift.

(a) 200 < z <1100

® ny > ng. so we are in the limit of z. > 1
e we know from part b) that Ty = Tk in this limit
e the gas and CMB are still thermally coupled so Tx = T

e so we have Ty =T, and — 1o signal
(b) 40 < z <200
e ny > ny . still so we are in the limit of z. > 1 and Ty = Tk
e the gas falls out of equilibrium with the CMB and cools adiabatically
e for a monotonic adiabatic gas, with no heating sources:

TV?/3 = constant. (53)
The volume scales with redshift as (14 2)~2 so we see that

Tk o (14 2)% (54)

The CMB temperature scales with redshift as T, oc 1 4 2. Thus, we see that once
the gas falls out of equilibrium with the CMB, the gas will cool faster and Tk < T.

e So we have:

T, —T, =Tk —T, <0, (55)

and we see that — absorption.

(c) 30 < z < 40



® now ny < N, o we are in the limit of z, <« 1
o we know from part b) that T = T in this limit

e so we have T, — T, =T, — T, and — mno signal

(d) 15<2<30
e the production of Lya photons leads to Ly« scattering setting the spin-flip level
populations so z, > 1
e we know from part d) that Ty = Tk in this limit
e due to adiabatic cooling and a lack of heating, Tx < T

e so we have Ty, — T, =T — T, <0 and — absorption

(e) 7T<2z<15
e the production of Lya photons leads to Ly« scattering setting the spin-flip level
populations so x4, > 1
e we know from part d) that Ty = Tk in this limit
o first sources heat the gas such that now Tx > T,
e so we have Ty, — T, = T — T, > 0 and — emission
() 2<7
reionization has ionized the universe so neutral hydrogen is negligible
thus, z. = 2o =0 and T, =T,

e so we have T, — T, =T, — T, and — mno signal



